Paper 3

Questions are applicable for both core and extended candidates

	Magnesium is an element in Group II of the Periodic Table.						
	(a)	Deduce the electronic configuration of magnesium.					
			[1]				
	(b)	Magnesium can be produced by reducing magnesium oxide with barium.					
		MgO + Ba \rightarrow Mg + BaO					
		Explain how this equation shows that magnesium oxide is reduced.					
			[1]				
2	Th	is question is about iron.					
	(b)	The equation for the reaction of iron with steam is shown.					
		$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$					
		Describe how this equation shows that iron is oxidised.					
			[1]				

- 3 This question is about metals and metal compounds.
 - (b) Iron is extracted in a blast furnace by reduction of iron(III) oxide, Fe₂O₃, with carbon monoxide.Carbon monoxide is produced by the reaction of carbon with carbon dioxide.

$$C + CO_2 \rightarrow 2CO$$

- (ii) Name the type of chemical reaction where oxidation and reduction take place simultaneously.

 [1]
- 4 (c) Hydrogen sulfide burns in air to produce sulfur dioxide and water.
 - (i) Complete the chemical equation for this reaction.

....
$$H_2S +O_2 \rightarrow 2H_2O + 2SO_2$$
 [2]

(ii) Explain how this equation shows that hydrogen sulfide is oxidised.

 [1]

Paper 4

Questions are applicable for both core and extended candidates unless indicated in the question

5	Iron ore contains iron(III) oxide, Fe ₂ O ₃ . A blast furnace is used to extract iron from Fe ₂ O ₃ .
	Equations for some of the reactions in the blast furnace are shown.

equation 1
$$C + O_2 \rightarrow CO_2$$

equation 2 $CaCO_3 \rightarrow CaO + CO_2$

equation 3 CaO +
$$SiO_2 \rightarrow CaSiO_3$$

(c) State the type of reaction shown by equation 2.

- **(b)** Iron(III) oxide, Fe₂O₃, in iron ore is converted to iron when it reacts with carbon monoxide, CO, in the blast furnace.
 - (i) Calculate the percentage by mass of iron in iron(III) oxide, Fe₂O₃.

	percentage =% [2]
(ii)	State the name of the iron ore which consists mainly of iron(III) oxide.
	[1]
(iii)	Describe how carbon monoxide is formed in the blast furnace.
	[1]
(iv)	Write the symbol equation to show the reaction that occurs when iron (III) oxide is converted to iron in the blast furnace.
	[2]
(v)	Name the chemical process which happens to iron when iron(III) oxide is converted to iron in the blast furnace.
	[1]

6	(a) The symbols o	f the el	ements	s in Pe	riod 2	of the	Perio	dic Ta	ble are shown.	
		Li	Ве	В	С	N	0	F	Ne	
	Use the symbols Each symbol ma								uestions that follow. II.	
	Give the symbol	of the	elemen	nt that:	(ext	ended	only))		
	(vi) only has a	n oxida	ation nu	ımber	of zer	0				[1]
7	This question is abo	out culf	ur and	compo	nunde	of culf	ur			
•	•							ot 10 # 0 .		
	Sulfur is converted i	into su	ituric ad	cia, H ₂	SO ₄ , t	by the (Conta	ct pro	cess.	
	The process involve	es four	stages							
	stage 1 Molten s	ulfur is	conve	rted in	to sulf	ur diox	ide.			
	stage 2 Sulfur die	oxide r	eacts w	vith ox	ygen t	o form	sulfu	r trioxi	de.	
	stage 3 Sulfur tri	oxide d	combine	es with	n conc	entrate	ed sulf	uric a	cid to form oleum, $H_2S_2O_7$.	
	stage 4 Oleum re	eacts to	o form o	concer	ntrated	d sulfu	ric acid	d.		
	(a) (i) In stage 1, The iron py						instea	d of n	nolten sulfur.	
	Balance the air.	e equa	tion for	the re	action	occur	ring wl	hen ird	on pyrites reacts with oxygen in	the
			FeS ₂	₂ +	O ₂ -	→F	e ₂ O ₃	+	.SO ₂	[1]
	(ii) Name Fe ₂ C	D ₃ . Incl	ude the	oxida	ition n	umber	of iro	n. (e x	xtended only)	
										[1]

8 Eth	anol is	manu	factured	by	two	methods:
-------	---------	------	----------	----	-----	----------

- (c) The catalyst in method 2 is phosphoric acid, H₃PO₄. Dilute phosphoric acid is a weak acid which contains phosphate ions, PO₄³⁻.
 - (iii) Determine the oxidation number of phosphorus in the PO_4^{3-} ion. (extended only) Show your working.

oxidation number =	[2]
--------------------	-----

- **9** Copper is a transition element. It has variable oxidation states.
 - **(b)** When copper(II) oxide is heated at 800 °C it undergoes the reaction shown by the equation.

$$4CuO \rightarrow 2Cu_2O + O_2$$

(i) Identify the changes in oxidation numbers of copper and oxygen in this reaction.

[3]